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Generation of secondary vorticity in a stratified fluid 

By A.  W.  MARRIS 
School of Engineering Mechanics, Georgia Institute of Technology 

(Received 26 March 1964) 

The theory is presented for the generation of secondary vorticity in a stratified 
fluid. The analysis is a generalization of original work of Hawthorne (1951). 
It is shown that for an incompressible, inviscid and non-diffusive flow, a flow- 
wise vorticity component will be generated in a curved stream when a density 
gradient exists in the direction of the bi-normal to the streamline. 

1. Introduction 
Hawthorne (1951) gave a general theory describing the generation of second- 

ary vorticity in a curved.flow of non-uniform velocity distribution. A significant 
feature of this work is its clear separation of the primary purely kinematical 
result (applicable to steady flow of any incompressible fluid) from the final 
specialization to inviscid flows. Recently Yih (1960), in theoretical studies 
of two-dimensional flow of incompressible non-diffusive stratified fluids, intro- 
duced, in two-dimensional form, a transformation which greatly facilitated the 
solution of the inviscid flow equations of the stratified fluid. 

It occurred to the writer that Hawthorne’s formulation could be applied in 
conjunction with Yih’s transformation to yield results for secondary flow de- 
velopment in a stratified fluid. Such results would seem to be of interest in rela- 
tion to thermal boundary layers in which the density varies, and to meteorology. 
It is the purpose of this work to present this generalization of Hawthorne’s 
formulation on the basis of Yih’s method. The analysis is restricted to steady 
inviscid non-diffusive incompressible flow. 

2. Transformation of kinetic equations for steady inviscid stratified 
flow 
The equations of motion and continuity for steady incompressible inviscid 

flow of a stratified fluid are respectively 

p(V. V)V = -grad ( p  + $), ( 1 )  

V.gradp = 0, (2l) 

divV = 0. P2) 
In  equation ( I ) ,  q5 is the potential of the body forces per unit volume which are 
assumed to be conservative. Equation (2l) implies that the density of an element 
of fluid does not vary in the flow direction, the flow being non-diffusive. 
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We introduce Yih’s transformation (1960) for the velocity, 

v’ = (P /PO)+  v. (3) 

Equations (1)  and (z2) become respectively 
po(V’ . V) V‘ = - grad (p + #), 

divV‘ = 0 ,  

and one can define a modified vorticity 
$2‘ = curlv’, 

where d iva’  = 0. 

From equation (3) 

(V’.V)V’ = grad-$V’.V’-V’x51’ = -p;lgrad(p+#), 

V‘xQ’ = p;’grad[p+po+V’.V’+#] = pilgrad U‘. 

( 7 )  

(8 )  

curl(V’xS2’) = 0. (9) 

and the modified Lamb vector is expressed in terms of the modified total head 
U‘ as 

For the inviscid flow under consideration then 

3. General kinematic resolution 
Let t ,  n, b be unit tangent, principal normal and binormal vectors for the 

streamline. The actual and modified velocities are given by 

v = qt, (10) 

(11) 

( 12) 

V‘ = (P/PO)*V = (P/PO)%t = 4’t- 

ct = (V‘ .Q’/q’2) V’ 
Following Hawthorne we resolve the modified vorticity into its component 

along the streamline and a component Q’-ct perpendicular to V’ and in the 
plane of V’ and a‘, according to 

a’ = &’t+(S2’-&’t) = (V’.Q’/q’2)V’+V’x (Sz’xV‘)/q’Z. (13) 

Taking the divergence of equation (13) and using divV‘ = 0, diva’  = 0 and 
rearranging, one obtains after a little reduction 
V‘grad[V‘.Q‘/q’2] = -3(q’)-4V’x (V’xQ’).[(V’.V)V’]- (q’)-2V’curl(V’xa2’). 

Again 
(14) 

V’ . S2’/q’ = a’. t = curl V’ . t ,  
= [grad (P/P0)41 x v * t + (P/PO)* 

= (PlPOP a - t Y  
- t, 

. I  

V’ grad [V‘ . sZ’/q‘2] = q’a [&/q]/as, (15) 
so that 

where s is the streamline arc co-ordinate and & the component of the vorticity 
in the flow direction. Also 

- 2V’ x (V’ x a’). [(V‘.V)V’] = - 2V’ x (V‘ x a’). a’, 
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where a‘ is the modified steady flow acceleration. Then 

- 2V’ x (V’ x Sf) .  [(V‘. V) V’J = - 2V‘ x (V’ x a’). qf2n/r  (16) 

( r  being the streamline radius of curvature) since the component q%/r is the 
only contributing component of a‘. 

Substituting (15) and (16) in (14), one obtains for the generation of secondary 
vorticity in the stream direction 

(17 )  
2 t  x (V’ x Sf) .  n t . curl (V’ x S’) --- 

q’2r 412 

4. Secondary vorticity generation in inviscid incompressible stratified 
fluid 

Equation (17) is purely kinematical. It applies to an under-determined system 
which is rendered determinate when one substitutes the appropriate expression 
for the modified Lamb vector V‘ x 8’ from the kinetic equations. 

For the flow under consideration the modified Lamb vector is lamellar (equa- 
tion (9)) and 

(18) 
3t  x ( t  x $2’) . n. .n = - ~ _ _  2($) = 2t  x (V’ .SZ’) 

as q qt2r q’r 
While a(&/q)/as may be expressed in terms of the spatial gradient of the trans- 
formed total head U’ through equation (8), the transformed total head lacks the 
geometrical significance of the normal total head, and it is more profitable to 
simplify equation (18) directly by expanding the vector product. 

The intrinsic form for SZ’ is 

8‘ = cur1V’ = q’(t.curlt)t+(aq’/ab)n+{(q/r)’-(aq’/an))b (19) 

(see, for example, Truesdell 1954), so that 

whence 

Equations (20 )  describe the generation of a vorticity component in the stream 
direction for a curved streamline due to a velocity gradient in the binormal direc- 
tion (i.e. due to a vorticity component an in the direction of the curvature) 
and due to a density gradient in the binormal direction. The first term of (20l) 
or (202) represents Hawthorne’s result; we see now that a density gradient in the 
binormal direction has an effect similar to that of a binormal velocity gradient. 

Consider a steady plane curved flow in (z, y)-planes parallel to the plane z = 0,  
with a velocity and density gradient in the z-direction. Such might represent a 

I$-2 
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skewed boundary-layer flow along a wall z = 0, or an atmospheric flow parallel 
to the ground z = 0. For such a flow = *- 4 aO/az where Ois the angle between the 
streamline direction and some fixed reference line in the plane x = const., and 

Equation (203) reduces to the result that the normal inertia force pq2/r must 
be independent of z, a conclusion which also follows from the absence of a 
normal pressure gradient in the planes z = const. The streamline radius of curva- 
ture thus increases in the x-direction in proportion to the specific kinetic energy 
of the flow. 

One now considers an example in which the density gradient itself is modified 
by the secondary flow. 

5. Approximate analysis of spiral secondary flow induced by density 
gradient 

Consider the case of a plane curved main flow of constant radius of curvature, 
for example, the flow in a pipe bent in a circular arc. We assume that the velocity 
is in essence uniform and consider the specific effect of a density gradient in 
generating secondary circu1ation.t It is supposed that initially a density gradient 
exists perpendicular to the plane of the main flow and its curvature. The density 
gradient creates a secondary circulation which in turn kdif ies  the density 
gradient. The centrifugal force tries to sweep the denser fluid to the outside of the 
curve and the reaction of the re-orientated density gradient results in a ‘pendu- 
lum-like ’ secondary circulation about the main streamline. $ 

Secondary 
flow streamline 

C streamline 

particles 

turned through 
angle 4 

FIGURE 1. Secondary circulation about curved flow induced by density gradient showing 
rotation of density gradient vector by secondary flow. 

The writer is very grateful to Professor Howard W. Emmons for pointing out to him 
this particular application of the general formulation. 
1 Due to the close analogy (equations (20)) between secondary vorticity generation from 

a binormal density gradient and secondaryvorticity generation from a binormal velocity 
gradient, the analysis and the results obtained in this section are necessarily quite similar 
to those obtained by Hawthorne (1951). 
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We assume that the secondary flow circulation V, occurs in planes perpendicu- 
lar to the main streamline as shown in figure 1. Suppose that initially there exists 
a density gradient 

g = ( i l ogp)  b =gob. (22) 
0 

One considers the secondary motion of the high density fluid particles. As a 
first approximation one may suppose that at time t the secondary flow has rotated 
the density gradient vector g through an angle q5 as shown. Assuming the second- 
ary velocity to be small in comparison to the main flow velocity, the magnitude 
of the density gradient along the binormal to the main flow is now go cos q5. 

The secondary circulation V ,  is related to the secondary vorticity by 

V ,  = BRt, (23) 

where R is the radius of secondary flow path of the high density particles. 

the elementary arc of +he circular main flow streamline is rd8. 
The main and secondary velocities may be written as q = re, V ,  = R4, while 

The general result 

gives 

d24 
or, approximately, 

= m2 cos 4, 
do2 

where m2 = $gar. (243) 

Equation (242) is analogous to the equation of motion of a pendulum making 
an angle q5 with the horizontal. The secondary circulation will oscillate between 
4 = 0 and q5 = n- about the main flow streamline, the main flow deflexion for a 
complete cycle being given by 

( 2 5 )  

The period is thus inversely proportional to the root of the density gradient go, 
and inversely proportional to the root of the main flow radius r .  The secondary 
circulation will pass through zero after each 7r(2/gor)) radians of turn. 

o = 27r/m = 27r(2/g0r):. 

This work is part of a research programme on secondary flow development in 
curved flow sponsored by the U.S. National Science Foundation. This work is 
dedicated to M.J.S. 

REFERENCES 

HAWTHORNE, W. R. 1951 Secondary circulation in fluid flow. Proc. Roy. SOC. A, 206, 

TRUESDELL, C. 1954 The Kinematics of Vorticity. Indiana. University Publications 

YIH, C-S. 1960 Exact solutions for steady two dimensional flow of a stratified fluid. 

374-387. 

Science Series, no. 19, pp. 13-14. Bloomington: Indiana University Press. 

J .  Fluid Mech. 9,  161-174. 




